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Abstract 

 We analyze the market entry problem faced by startups that must integrate their service or 
product with one or more complementary technologies.  The problem is especially challenging 
when the complementary technologies have large but uncertain cost reduction potentials.  The 
market for intermittent renewable power generation (e.g., wind, solar) combined with storage 
(e.g., battery, pumped reservoir, flywheel) provides a motivating context.  Renewable generation 
technologies are immature; thus storage startups face high risks when making R&D investments 
to integrate with them. 
 The entrepreneurship literature often suggests that startups should pursue focused strategies 
for various reasons, including bounded rationality and budget constraints. This literature 
generally overlooks startups entering markets with complementary technologies. The advice for 
mature firms investing in complementary technologies is often to diversify their investment 
across multiple complements to manage technological uncertainty.  Given competing guidance, 
we seek to extend the entrepreneurship literature by modeling startups’ entry decisions for 
markets in which complementary technologies exhibit strong learning effects.  
 We find that, consistent with the extant entrepreneurship literature, startups generally achieve 
higher expected returns by channeling their integration investment to only one complementary 
technology. However, the mechanisms driving our results are very different from prior research 
findings and hinge primarily on nonlinear feedback effects that occur when firms concentrate 
integration investment in only one complementary technology.  Interestingly, this focused 
strategy often does not yield the highest market share or the lowest likelihood of bankruptcy. We 
characterize the situations under which each finding holds and describe the implications of these 
findings for theory, practice, and policy. 
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In many markets with either supply- or demand-side externalities, a startup’s success is strongly 

tied to the availability of complementary technologies (Schilling 2002) that are often 

technologically distinct and rapidly evolving (Van de Ven 2005). Emerging complementary 

industries are those whose products and services involve a system of complementary 

technologies (or complements) with uncertain cost trajectories (from learning curves or network 

externalities) and uncertain market penetration. They include, for example, apps and 

smartphones, videogames and consoles, and smart meters and smart grids (Cusumano 2010; 

Eisenmann et al. 2011). A recent Google search of startups selling into such “two-sided” markets 

conducted on March 16, 2012 using the terms “two-sided market startup” identified hundreds of 

startups that claim to be pursuing strategies dependent on complementary technologies. These 

sites indicate that startups face a difficult investment decision because they must choose which 

complementary technology or technologies to focus their R&D efforts on. As a simple example, 

consider the energy storage market whose products smooth the volatility of power delivered by 

renewable generation technologies such as wind or solar power. An energy storage entrant can 

integrate its technology to work more effectively with that of wind technology, solar technology, 

or both. Because the complementary technologies are technically complex, investment in R&D 

to integrate the storage technology with a given complementary technology such as wind is 

generally complex, expensive, and difficult (Anderson et al. 2007; Makri et al. 2010). Moreover, 

investment in a complementary technology is typically idiosyncratic and hence will not fully and 

seamlessly transfer to a second complementary technology (Grant 1996).  

 Because capital is usually scarce for startups, managing the integration investment decision is 

critical to the startup in emerging complementary industries/markets.  Yet the extant literature’s 

guidance on this issue is contradictory and imprecise. For example, the entrepreneurship 

literature (e.g., Sandburg and Hofer 1987; Romanelli 1989) generally suggests that startups, 

because of their limited capital and other resources (such as limited technical staff), should 

pursue focused investment strategies in the face of uncertainty (e.g., they should invest in R&D 
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to tailor the product for only one of several potential markets).  However, this entrepreneurship 

literature does not explicitly consider how integration investment affects complementary 

technologies. A separate product development literature (Arditti and Levy 1980; Ward et al. 

1995; Srinivasan et al. 1997; Krishnan and Bhattacharya 2002) offers more nuanced guidance 

that includes spreading integration investment across complementary technologies to mitigate the 

risk of technology failure.  However, few firms studied in this stream of literature are startups; 

most are established firms with access to significant capital, which greatly impacts outcomes.  

 To reconcile these contradictory recommendations, we carefully model the integration 

investment decision faced by startups that depend on emerging complementary technologies.  

Specifically, we analyze two decisions that a startup must make that critically impact its success: 

(1) how much to invest in integrating complementary technologies, and (2) whether to focus 

integration investments on one complementary technology or across multiple complementary 

technologies. Because this decision inherently involves numerous nonlinear market and learning 

feedback loops with embedded delays, it is difficult to analyze, either intuitively or through a 

closed-form analysis (Sterman 1994).  To overcome this, we employ the system dynamics 

methodology (Forrester 1958) to create and explore a simplified, conceptual simulation model of 

the problem. For concreteness, we ground the simulation in the context of the aforementioned 

energy storage industry (which produces batteries, flywheels, molten salt storage, etc.) because it 

typifies emerging complementary industries. For example, an energy storage startup firm might 

decide to integrate its technology with wind power by cospecializing it through inverter 

selection, control electronics, and by adding capacitors (Xtreme Power 2010). However, 

integration with wind power does not make the startup’s product fully compatible with 

photovoltaic solar power because of differences in electrical characteristics, generation volatility, 

and specific physical characteristics (LaMonica 2010). Any integration investment by the storage 

startup that makes a complementary technology, such as wind power, more attractive for 

purchase by power producers (e.g., utilities or independent power producers) will enhance the 

startup’s learning efforts. This is because additional sales of storage will affect the rate of the 
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storage startup’s learning efforts, increasing both deliberate learning (because additional revenue 

is available for R&D investment) and autonomous learning (from the learning curve). Because 

this learning further increases the attractiveness of the startup’s product to the market, an 

endogenous reinforcing loop is created. In addition, because both technologies involved (storage 

and generation) are rapidly evolving, the energy storage startup faces a complex and highly risky 

integration investment decision. 

 We develop a simulation model to explore how various factors, uncertainties, and scenario 

parameters influence the storage startup’s integration investment decision using the system 

dynamics methodology (Forrester 1958; Sterman 2000). We capture uncertainty by varying the 

startup’s technology learning curve, the learning curves of the complementary technologies, and 

the price of natural gas. Natural gas is a mature competitor to the startup’s energy storage 

technology because natural gas plants can rapidly ramp up and down to compensate for the 

volatility inherent in wind and solar power generation.  To test the sensitivity of our findings to 

the assumptions in our simulation model, we vary such parameters as technological uncertainty, 

technology costs, the amount of capital injected by an equity partner, the discount rate and time 

horizon, market sensitivity to price, technological spillovers, and “over-investment” in 

integration, among others.  

 In particular, this model shows that startups maximize value creation by investing in 

integrating with only one complementary technology. Our model’s results generally agree with 

the earlier entrepreneurship literature’s recommendation to focus R&D investment. Unlike 

earlier guidance from studies that hinge on the effects of bounded rationality and limited access 

to capital, however, our results derive from the nonlinear feedback effects that occur when a 

startup concentrates its integration investment on a single complementary technology. Moreover, 

our model can characterize the sensitivity of this decision.  For example, increases in uncertainty 

or the strength of supply chain externalities increase the advantages of a one-technology focus, 

while favorable financial conditions (e.g., reduced interest rates, increased working capital) or 

increased transferability of the integration investment from one complementary technology to 
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another (integration spillover) lessen the advantages of such focus. In addition, while focused 

technology strategies may optimize financial returns, they often do not optimize market share or 

lower bankruptcy rates. For example, from a managerial perspective, a focused integration 

investment strategy is often suboptimal with respect to market share when there are favorable 

market conditions (significant market growth or low market sensitivity to price), significant 

integration spillover, or a compressed decision horizon. With respect to bankruptcy, avoiding 

integration investment altogether is typically optimal. 

 Since our research questions have broad implications, as indicated earlier, but our simulation 

is specific, we extend the sensitivity analyses described earlier to explore the external validity of 

our model. The findings were extremely robust to variations in assumptions, giving us 

confidence that our model’s findings are not only applicable to the energy storage industry, but 

are likely to apply to other emerging complementary industries as well. This allows us to address 

broader research issues at the interface of the operations and entrepreneurship literature. First, we 

reconcile competing advice from the entrepreneurship literature (Sandburg and Hofer 1987; 

Romanelli 1989) and flexible product development literature (Arditti and Levy 1980; Ward et al. 

1995; Srinivasan et al. 1997; Krishnan and Bhattacharya 2002; Sommer and Loch 2004; Sommer 

et al. 2008) by characterizing the integration investment decision in emerging complementary 

markets. Specifically, we examine factors that drive the startup’s decision to (1) invest in 

cospecialization with complementary technologies, and (2) to focus that investment on one 

complementary technology or spread it among multiple technologies. Secondly, we extend the 

integration (Anderson and Parker, Forthcoming) and “winner-take-all” two-sided market (Parker 

and Van Alstyne 2005; Eisenmann et al. 2011) literature to begin to address some operational 

issues and constraints specific to the startup environment.  

  The paper proceeds as follows. In Section 2, we discuss the relevant literature. Section 3 

describes our model. Section 4 formally presents the various sensitivity and policy analyses 

performed on this model and extensively details how various factors affect the optimal 
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integration investment decision. In Section 5, we discuss the limitations of this study and its 

implications for theory. Section 6 concludes by discussing implications for practice and policy. 

,"-+%.&/%)&."0.1+.2"
To investigate the startup integration investment decision in emerging complementary industries, 

we must build upon several research streams relevant to the topic. The literatures on R&D 

investment decisions for business startups and venture financing and entrepreneurship success 

both discuss the investment decisions that must be made under the constraints that startups 

typically face. The complements and two-sided networks literature touches on the complements 

and externalities faced by firms in complementary industries. The product integration literature 

discusses integration investment directly, and the flexible product development literature 

examines investment in competing technologies under technological uncertainty. We also outline 

the system dynamics work in the field of renewable energy as it relates to our motivating 

example.  The guiding logic behind our literature review is to include only papers that bear 

directly on the integration investment decision or are highly cited papers in a particular field 

touching on this topic. Finally, we offer a summary table (Table 1) that identifies the gaps in 

these literatures with respect to the factors underlying the questions investigated by this paper. 

,3!"045"#$1.6%7.$%"5.*+6+'$6"
Much of the literature that examines R&D in the startup context focuses on the flow of 

innovation either between firms (e.g., Shan et al. 1994; Gans and Stern 2000; Almeida et al. 

2003; Rothaermel and Deeds 2004) or between firms and institutions (e.g., universities, 

government bodies) (e.g., Bania et al. 1993; Mansfield and Lee 1996). Other streams address the 

underpinnings of R&D success in startups, such as personnel quality or geographic location (e.g., 

Deeds et al. 2000). The literature that focuses directly on how startups make R&D investment 

decisions, and how best to make such decisions, is surprisingly limited. Shane and Ulrich (2004) 

point out that Management Science published only four articles between 1971 and 2004 that 

examine startup decision making with respect to operational decisions. Joglekar and Levesque 

(2009) note a gradual correction of this scarcity in recent years and model the trade-off between 
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marketing and R&D investment in startups. Armstrong and Levesque (2002) model a startup’s 

entry timing into a market as a function of the industry’s overall R&D progress. Zott’s (2003) 

simulation study traces the role of experimentation, imitation, timing, cost, and resource 

deployment in market entry decisions and subsequent success. Similarly, Hilmola et al. (2003) 

use a system dynamics model to examine how a reduction in software development lead time can 

improve financial outcomes for software startups by increasing the amount of working capital 

available for R&D. Related work on inventory and production decisions in startups includes 

Babich and Sobel (2004), Archibald et al. (2002), and Swinney et al. (2011). Interestingly, the 

latter two studies optimize long-term survival rather than shorter-term financial metrics. Finally, 

Tanrisever et al. (Forthcoming) characterize how a startup’s debt influences the aggressiveness 

of its production and investment in process improvement.  

,3,"8.$%)&."9+$/$*+$:"/$(";$%&.<&.$.)&6=+<">)**.66"
An important stream of research examines sources of startup funding as a function of the 

startup’s R&D decisions and other factors (Eckhardt et al. 2006; Hall and Lerner 2009), often by 

focusing on how venture capitalists make funding decisions (Gompers 1995; Amit et al. 1998; 

Zacharakis and Meyer 1998; Zacharakis and Meyer 2000). Another strand explores how venture 

capitalists oversee funded startups (Lerner 1995; Sapienza et al.1996). A review of venture 

capitalists’ investment decision making appears in Soderblom and Wiklund (2006).  A 

significant body of literature examines key drivers of startup success; most of these studies 

recommend that startups pursue tightly focused strategies, particularly in the context of working 

capital constraints and compressed time horizons (and associated high discount rates) that 

startups face. Bruderl et al. (1992) show that startups occupying a narrow niche in the market 

have a higher survival rate. Mitchell and Nault (2007) explore the role of cognition and bounded 

rationality in entrepreneurship success. Janney and Dess (2006) and Norton and Tenenbaum 

(1993) find that investors (especially venture capitalists) who specialize by industry improve 

their ability to control risk because they can better evaluate startups in that industry, and thus 

look for more focused firms in which to invest. Romanelli (1989) finds that aggressive market 
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specialization is good for startups’ survival; Sandberg and Hofer (1987) agree, but argue that it 

can also limit a product’s functionality. This idea recalls the “lean startup” set of ideas 

championed by Ries (2011) that asserts that a “minimum viable product” in terms of 

functionality is necessary to gain rapid market feedback.  

,3?"@'7<A.7.$%6"/$("B2'C>+(.("D.%2'&E6"
Studies on complementary assets include Teece (1986), Tripsas (1997), and Rothaermel (2001) 

and continue to the present. Gawer and Cusumano (2002) and Eisenmann et al. (2009) provide 

recent reviews. In general, papers in this literature stream consider the strategic question of 

whether a firm should best obtain cospecialized complementary assets through internal 

resources, alliances, open innovation (Chesbrough 2003), or some combination thereof (von 

Hippel 2005). In contrast, the two-sided network literature (Rochet and Tirole 2003; Parker and 

Van Alstyne 2005) focuses on pricing rather than the R&D investment required to tailor 

complements on one side of the market to the other in order to create more attractive bundles for 

end-consumer consumption (Boudreau and Hagiu 2008). However, recent research has begun to 

focus on R&D investment decisions, as exemplified by Gawer and Cusumano (2002), Prencipe 

et al. (2003), Iansiti and Levien (2004), Schilling (2009), Cusumano (2010), Eisenmann et al. 

(2006, 2011), and Boudreau and Hagiu (2008). They find that emerging sponsors (firms with 

significant market power) can create standards, encourage investment, or use other levers to 

prevent market failures and manage network effects to improve their own outcomes. 

,3F"G&'()*%"#$%.:&/%+'$"
A relatively small strand of literature related to the investment integration decision examines 

product integration (for a review, see Anderson and Parker (Forthcoming)). Key results show 

that product integration is difficult in terms of expense, resources, and time (Parker and 

Anderson 2002; Prencipe et al. 2003; Makri et al. 2010), yet is often a decisive factor in the 

marketplace (Iansiti 1995a, 1995b).  Teece (1986) and a number of other investigators on 

complementary assets also pursue this question, albeit within the context of either a vertically 

integrated firm or mature buyer-supplier dyads, whereas our study concerns emerging 
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complementary markets like energy storage. Despite the type of industrial organization, 

however, Grant (1996) contends that any investment in integrating two disparate technologies 

will be idiosyncratic because so much of the knowledge underlying any technology is tacit, and 

tacit knowledge is notoriously difficult to transfer (Kogut and Zander 1992). For example, an 

energy storage startup’s investment in integrating its storage technology with wind power 

technology, for example, cannot be repurposed later on to integrate with solar power without 

significant additional costs.  

,3H"9A.I+JA."G&'()*%"5.1.A'<7.$%"
For the most part, research in product development and management of technology in mature 

firms does not directly address the integration investment decision (Krishnan and Ulrich 2001; 

Shane and Ulrich 2004; Gaimon 2008). However, a closely related stream studies flexible 

product development (Nelson 1961; Arditti and Levy 1980; Ward et al. 1995; Srinivasan et al. 

1997; Krishnan and Bhattacharya 2002; Sommer and Loch 2004; Sommer et al. 2008). This 

research suggests that it is often economically beneficial for firms to make R&D investments in 

two or more potential technologies in the presence of technological uncertainty. However, the 

firms studied in this stream of literature do not bear the startup’s time compression and working 

capital constraints nor the supply-side externalities created by emerging complementary markets.  

,3K">L6%.76"5L$/7+*6";$.&:L"M'(.A+$:"
Because our motivating example of renewable energy employs a systems dynamics model, we 

note that system dynamics has a long and rich history of energy modeling. Most relevant to the 

context of the motivating example in this paper, Struben (2006) and Struben and Sterman (2007) 

analyze technological diffusion in the renewable energy industry and examine industry decisions 

at an aggregate level. In contrast, where they study aggregate industry decisions, we isolate and 

study the decision-making processes of an individual startup in the industry. 

,3N"-+%.&/%)&."O/<"
To sum up, the extant literatures do not simultaneously consider all the major factors that bear on 

the integration investment decision for startups in emerging complementary industries—market 
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growth, integration, supply side externalities, time horizon compression, working capital 

constraints, and focus (Table 1). In particular, although the most relevant and recent product 

development literature finds that mature firms facing uncertainty often create value by investing 

in integrating with multiple technologies, the literature on drivers of startup success recommends 

focused R&D investment. Both literatures have significant gaps. The flexible product 

development literature does not consider the constraints that startups face such as working 

capital constraints and time compression. The extant startup literature does not address how best 

to make R&D decisions in the presence of complementary technologies that exhibit the sort of 

supply- and demand-side network externalities characteristic of two-sided markets, which 

represent a growing segment of the economy (Eisenmann et. al. 2009). These gaps are important, 

not only because research strongly supports the correlation between the presence of 

complementary technologies and startup outcomes (Schilling 1999; Schilling 2002; Van de Ven 

2005), but because entrepreneurs increasingly are basing their investment strategies on 

integrating with complementary technologies to harness externalities (Eisenmann et. al 2006). 

We propose to begin bridging these gaps by carefully examining the specific drivers of startups’ 

integration investment decisions in the context of complementary technologies with supply-side 

externalities such as learning curves.  

Table 1: Summary of Factors Considered in this Paper vs. That of the Reviewed Literatures 
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We develop a conceptual model to highlight key issues that affect integration investment 

decisions in the presence of emerging complementary technologies. We ground our analysis in 

the energy storage industry to provide a concrete example, but will not attempt to capture all of 
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the subtleties of that industry because doing so would add substantial complexity without further 

illuminating our research questions. For example, we assume that the fraction of the installed 

base of U.S. power generation held by intermittent renewable generation has reached the level at 

which each purchase of new, intermittent, renewable power-generation capacity will require a 

complementary purchase to ensure acceptable power quality (i.e., to reduce the volatility of 

power output within acceptable parameters). In reality, many geographic areas in the U.S. have 

not yet experienced that level of penetration. However, in the near term, the industry is expected 

to reach that level (Taylor 2009).  Our model assumes this level of renewable penetration has 

already been reached because to do otherwise would complicate the model without increasing its 

power to generate insights. For similar reasons, we include only two complementary 

technologies in our model. For convenience, we label them “RA” and “RB,” and refer to them 

together as “renewables,” “complementary technologies,” or just “complements.”  Most often, 

we will use wind power and photovoltaic solar power (hereafter just “solar” power) as examples. 

We model two alternatives that can complement the renewables by sufficiently smoothing out 

their inherent volatility: natural gas (hereafter “gas”) and the startup’s storage technology 

(hereafter, “storage”). Where it helps the exposition, we use batteries as an example of storage. 

We refer to both gas and storage as “smoothing technologies.” In our model, the market of 

independent power producers (IPPs) that purchases renewable power can choose from four 

bundles of renewable and smoothing technologies: RA-storage, RA-gas, RB-storage, or RB-gas. 

These four bundles compete with one another for market share.  

 Figure 1 illustrates a causal loop diagram of our model. In causal loop diagrams, which 

present an overview of the dynamic structure of the model, a “+” on an arrow between two 

variables indicates that the variable’s partial derivative (at the head of the arrow) is positive with 

respect to the variable at the tail. For example, an increase (decrease) in the Sales of RB plus 

Storage Bundle will increase (decrease) the Revenue for Storage, all other factors being equal. In 

contrast, a “‒” on an arrow between two variables indicates that the variable’s partial derivative 

(at the head of the arrow) is negative with respect to the variable at the tail. For example, an 
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increase (decrease) in the Cost of Storage Bundled with RB will decrease (increase) the Sales of 

RB plus Storage Bundle, all other factors being equal. The delays indicate a delayed response 

between the two variables, generally caused by the presence of an integration or accumulation of 

one or more stocks between the two variables. An “R” above a loop’s name indicates that the 

partial derivative of each variable along that loop with respect to itself is positive, albeit with a 

delay. Hence, these loops are reinforcing cycles. A “B” above a loop’s name indicates that the 

partial derivative of each variable along that loop with respect to itself is negative. These sorts of 

loops are referred to as “balancing” loops as they tend to balance out over time. We now proceed 

with a more detailed and mathematical description of each relationship in the model.   

Figure 1: Causal Loop Diagram of The Model 

  
 First, we assume that learning-by-doing (or the “learning curve”) occurs in the production of 

the two renewable generation technologies and the storage technology, which is typical of 

immature technologies (Argote 1999), although we note (as does Argote 1999) that some of this 

learning process is the result of the reinvestment of the contribution margin to reduce technology 

costs. Accordingly, the cost per kilowatt (kW) purchased in equations (1) and (3a), as levelized 

over time including in capital, installation, operating and maintenance, and so on (Darling et al. 
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2011), of each renewable generation technology decreases in the standard power-law fashion as a 

function of the cumulative installed base for that technology (Argote 1999). The cost of each 

new unit of storage (in kWh) in (2) and (3b), again levelized over time, also decreases in a 

similar manner. In contrast, the levelized cost of natural gas, which includes all the costs listed 

above plus fuel cost (Kluza 2009: 42) is that of a mature technology. Given the high commodity 

price exposure, the gas generation cost is assumed to vary as an AR(1) or “pink noise” process as 

modeled in (4a) – (4b) to avoid sensitivity to the time step chosen to numerically evaluate the 

model (for details, see Sterman 2000: 917-920; Anderson and Fiddaman 2010). Thus,   

      (1) 

      (2) 

     , i!{a,b} (3a) 

      (3b) 

     , (4a) 

      (4b) 

 a   is the index for Renewable A.  
 b   is the index for Renewable B. 
 s     is the index for storage. 
 g     is the index for gas. 
 di,j(t) is IPP demand at time t for the bundle of renewable i with smoothing technology j. 
 Qi(t) is the installed base of renewable technology i at time t. 
 Qs(t)  is the installed base of storage at time t. 
 ci(t)  is the cost per unit of renewable technology i!{a,b} at time t as levelized over its 

operational lifetime. Note that this does not include any effects of integration 
investment.  

 Cs(t)  is the cost per kWh for the storage technology. The cost is levelized over the 
lifetime and usage intensity of the technology. Note, when storage is bundled with 
renewable power generation, it is most typically sold in a bundle of 4 kWh of 
storage for each kW of renewable power capacity (Kluza 2009: 42). 

 Cg(t)     is the cost per kWh from use of gas generation as a smoothing technology, with 
capital and operating costs levelized over the asset’s operational lifetime. Due to the 
volatility of natural gas prices, the gas generation cost is assumed to vary as an 
AR(1) or pink noise process with mean µCg and standard deviation "Cg.  
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 e(t)   is the white noise input to the pink noise filter; the standard deviation of e(t) is 
scaled in (4b) so that "Cg is independent of the time step #dt used to numerically 
evaluate the simulation (Anderson and Fiddaman 2010). 

 #corr  is the correlation time for the AR(1) gas cost process. 
 $i   is renewable i’s initial unit “production” cost.  
 $s   is storage’s initial unit “production” cost.  

 %i   is renewable i’s learning parameter, %i&0. 
 %s   is storage’s learning parameter, %s&0. 
 
Note that the learning parameters %i ,%s are related to the learning curve “slope,” that is, the 

percent drop in production cost, in the following manner: 

     ! ! ln learning!curve!!"#$% /!"  (2). (5) 

"?3,  #$%.:&/%+'$"/$("@'6<.*+/A+P/%+'$"
Integrating complex technologies is difficult (Iansiti 1995a, 1995b; Parker and Anderson 2002), 

and entrants in the storage sector are reducing integration costs by cospecializing their products 

to that of a renewable technology. Some cospecialization may transfer or “spill over” between 

renewable technologies (Ghemawat and Spence 1985), but for simplicity we model only that 

portion that does not spill over and assume that the remainder is embedded in the “production” 

costs as discussed in Sections 3.1 and 3.4. In Section 4, we examine the implications of relaxing 

this assumption.       

 We model the effect of the integration investment on cospecialization in (6) by assuming that 

the cost for the startup’s storage technology that is cospecialized for a particular complement is 

the product of its production cost and a cospecialization cost multiplier xi,s(t) where i indexes 

either RA or RB. In (7), this multiplier is assumed to exhibit diminishing returns in the 

cumulative investment Ni(t) and has an upper bound of unity and a lower bound between zero 

and unity, which is consistent with prior studies on R&D investment (Weill and Olson 1989; 

Gaimon 1997; Kouvaritakis et al. 2000). Because gas is a mature technology, our model assumes 

that all potential cospecialization benefits have been realized, so in (8) its cospecialization cost 

multiplier xi,g(t) is set to unity. Hence, the price of the total bundle of the smoothing technology 

(either storage or gas) and its complement (either RA or RB) is modeled as shown in (9). 
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        (6) 

      (7) 

       (8) 

       (9) 
 Ni(t)  is cumulative integration investment in cospecializing in renewable i at time t where 

Ni(0) =0.  
 ni(t)  is the instantaneous integration investment in cospecializing in renewable i at time t. 
 xi,s(t)  is the cospecialization cost multiplier for bundling storage and renewable i at time t.  
 xi,g(t)  is the cospecialization cost multiplier for bundling gas and renewable i at time t.  
 'i (t)  is the cospecialization parameter for renewable i, a constant. 
 xi,min  is the minimum cospecialization multiplier and lies between zero and unity. 
 pi,j(t)   is the cost (including integration) per unit of the smoothing technology j at time t 

cospecialized to renewable i. 
  
Because we do not directly analyze the suppliers’ cost structures in these equations but only how 

they are reflected in bundle prices passed on to the independent power provider (IPP) market, for 

convenience, the supplier markups in this model are assumed to be impounded into the costs of 

production and integration for the various technologies. This assumption is reasonable if we 

assume that the markup is constant between the price at which the market purchases bundles and 

the actual cost to the various suppliers to provide them. Such a relationship is often found in 

practice and is commonly assumed in the system dynamics literature (Sterman 2000: 803-813).  

?3?"Q)$(A."@'6%"/$("M/&E.%"R('<%+'$"
Recall that the IPPs form a market that buys bundles of renewable energy and storage. The rate 

at which the market purchases each bundle is governed by (10) – (13), which detail the logit 

choice model that is standard for market models in the system dynamics literature (Sterman et al. 

2007) and is derived from the marketing literature (see e.g., Lilien et al. 1992). 

       (10) 

      (11)  

      (12) 
  di,j(t) is the demand for the bundle of renewable i and smoothing technology j, 
  dipp  is the overall demand for renewables, a constant, 
  mi,j(t) is the market share of the bundle of renewable i and smoothing technology j, 

Ni (t) = ni (t) 0

t

! dt  where Ni(0) =0 and i! a,b{ }  

xi,s (t) = exp !"iNi (t)[ ] 1! xi,min( ) + xi,min , i! a,b{ }  
xi,g (t) = 1 , i ! a,b{ }  

pi, j (t) = ci (t)+ xi, j (t)cj (t),  i ∈ a,b{ },  j ∈ s,g{ }

di, j (t) = mi, jdipp , i ! a,b{ } , j ! s,g{ }  

mi, j (t) = ai, j / ak ,l
k ,l
! , i,k ! a,b{ } , j,l ! s,g{ }  

ai, j (t) = exp !" pi, j / pref( ) , i ! a,b{ } , j ! s,g{ } 
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  ai,j(t) is the market attractiveness of the bundle of renewable i and smoothing 
technology j,  

  (  is the sensitivity of market attractiveness to price, and 
  pref  is a normalizing reference price that enables ( to be a unitless constant.  
   
?3F"S'&E+$:"@/<+%/A"/$("#$1.6%7.$%"+$"@'6<.*+/A+P/%+'$"
Figure 1 presents a causal-loop diagram of the full model including the integration investment 

and working capital structures. We assume that the startup is in the growth/expansion phase and 

has a sellable, albeit immature, product. There are a number of ways to model R&D investment 

in cospecialization during this phase. One is to model investment as a constant fraction of the 

income stream. This is a common practice, particularly in empirical studies, and is also used by 

Rahmandad (2012) to model investment in long-term capabilities such as R&D. While this 

formulation captures the decisions of well-established firms reasonably well, it creates irrational 

behavior in startups, which receive periodic injections of working capital separate from income. 

Moreover, modeling investment as a function of the income stream does not take into account 

whether a firm is near bankruptcy, an ever-present danger for startups. Modeling investment as a 

fraction of revenue is even more prone to both of these problems. To avoid these issues, we 

adapt the work of Joglekar and Levesque (2009), who suggest that investment in R&D is a 

constant fraction of working capital. Modeling investment as a constant fraction of working 

capital requires the creation of a simple balance sheet to track working capital for the storage 

entrant. Most startups are funded by several rounds of capital injection, which, in principle, can 

combine both debt and equity financing. However, we make a number of simplifying 

assumptions to minimize unnecessary complexity in the model because our main purpose is to 

examine how the startup should make the integration investment decision and not to identify the 

exact effects of financial structure on the startup. One simplifying assumption is that all 

financing comes from equity because most high-tech startups are primarily equity financed (Hall 

2002, Nolen 2011). The second simplifying assumption is that capital injections are made at 

equal intervals and in equal amounts. For example, in our base run scenario, which has a 

decision horizon of 8 years (96 months), cash injections of $10 million each occur at months 0, 
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32, and 64. We assume also that working capital increases over time as a function of revenue, 

which is itself a function of the price per unit and unit demand for each of the two renewable-

storage bundles as shown in (13). In (9), we explicitly assume that the prices for all technologies 

in the model are a simple multiple of the variable cost (Sterman 2000: 803, 813). Continuing this 

assumption, revenue increases working capital in (14) at a rate determined by the contribution 

margin ratio, which, in this model, also subsumes all ongoing investment that is not explicitly 

directed toward cospecialization. We also assume in (14) a fixed cost per unit time for 

administrative burden and similar allied costs. Again, we model investment in cospecialization as 

a fraction of working capital in (15), but an exogenously determined portion of that investment 

goes to RA rather than RB. 

      (13) 

      (14) 

     
 

(15)  

  ri(t) is the revenue for the storage firm, in this case, price * demand. 
  )  is a conversion factor between the levelized unit price per kWh and revenue in  
    millions of U.S. dollars (MMUSD). 
  *(t) is the working capital at time t for the storage entrant (in MMUSD). 
  *inj  is the total injection of working capital in MMUSD to the storage entrant over the 

entire simulation horizon, which comes from an equity partner. 
  +  is the total number of injections over the simulation horizon.  
  ,(t)  is an impulse (or Dirac “delta” function) of value unity when t = {0, tf /M, 2tf 

/M,…, (M-1)tf /M} and the startup is not bankrupt (see definition of tbankrupt in 
Section 3.5).  Otherwise ,(t) = 0. (This provides a set of M equally spaced, 
equally sized injections Kinj/M millions of U.S. dollars). 

  -  is the contribution margin ratio (price – variable cost)/price per unit of storage, 
  f(t)  is the fixed costs at time t for the storage entrant (this is constant over the 

simulation). 
  .  is the fraction of working capital K(t) that is directed per year to investment in 

cospecialization (e.g., if .  = 36% per year, then 3% of working capital will be 
directed to investment in cospecialization each month). 

  /i  is the fraction of total investment in cospecialization directed to renewable i. 
 

r(t) = ! pi,s (t)di,s (t)
i
" , i ! a,b{ }  

dK(t)
dt

=
Kinj

M
δ (t)+κ r(t)− f (t)− ni (t)

i
∑

ni (t) = !i" (t),  where !i
i

# = 1 and i $ a,b{ }
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The objective function of this model is to maximize the net present value (NPV) of the startup 

firm over the planning horizon.  

     where    (16) 

  0   is the discount rate. 
  thorizon  is the time horizon for the startup’s decisions prior to the liquidity event. 
  tbankrupt  is the time at which working capital K(t) first declines to zero, i.e., it becomes 

insolvent. We equate this with the legal condition of bankruptcy to avoid 
complicating the model with legal considerations that do not increase our 
insights. Note that “bankruptcy” may not occur over the decision horizon of the 
model, in which case tbankrupt is assumed to be greater than thorizon.  

   
F">.$6+%+1+%L"/$("G'A+*L"B.6%+$:"
In this section, we test the model using the Vensim® simulation package for various sensitivity 

and policy concerns to examine the effects of integration investment on complementary 

products. Explicit validation tests for the model are presented in the online appendix as is a table 

of base case parameter values and their sources.  

F3!"Q/6."@/6."M'(.A"
This subsection presents results from a deterministic “base case” to illustrate some typical yet 

important behaviors of the model. In the next subsection we present a Monte Carlo analysis, 

which provides more robust and general insights into the model under risk.  

 Demand for each of the four bundles (RA-storage, RB-storage, RA-gas, and RB-gas) is 

presented for the base case in Figure 2. As an initial basis for comparison, the base case run 

assumes that, much like wind power versus solar power, RA has a lower initial cost than RB, yet 

RB’s learning curve has a much greater potential for cost reduction. All four bundles are 

competing for the same market. Integration investment is split evenly between RA and RB. Two 

trends emerge. Over the simulation’s time horizon, demand for the RA- and RB-storage bundles 

remains small but increases relative to the RA- and RB-gas bundles because, over time, the cost 

of storage decreases relative to gas. The other trend is that both of RA’s bundles are trailing their 

RB counterparts over time as RB’s superior cost reduction opportunities are realized. 

Max
ψ , φa , φb

exp −θt( ) dK(t)
dt

−
δ (t)Kinj

M
⎧
⎨
⎩

⎫
⎬
⎭

dt
0

t f∫ t f = min thorizon ,tbankrupt( )
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Throughout the simulation, the levelized variable cost of gas (including the amortization of fixed 

costs, operations, maintenance, etc., as well as fuel) is a stochastic AR(1) or pink-noise process, 

whose coefficient of variation and correlation times are listed in the online appendix. While the 

gas price is stochastically “cyclic,” its mean is stationary. In contrast, the price of storage 

decreases steadily over the simulation timeline because of the startup’s autonomous learning 

curve and integration investments (Figure 3).  (It should be noted that some of this cost decrease 

from cospecialization could be interpreted as reducing the amount of “rated” megawatts for the 

renewable lost to volatility, particularly in overvoltage situations.) 

Figure 2: Demand (in Megawatts purchased per month) for the Four Capacity Bundles and Overall NPV in the Base Case  

            
Notes: (1) Demand for the RA-storage bundle is slightly larger than demand for the RB-storage bundle. The difference between 
the two can best be seen at month 96. (2) Each megawatt (MW) of a renewable is bundled with 4 megawatt-hours (MWh) of 
storage. This is a common assumption in the storage industry (see Kluza 2009: 54). (3)  MMUSD = millions of U.S. Dollars. 
  

Figure 3: Cost Structure for Our Base Case Simulation.  

    
Note: The costs are levelized costs of capital expenses, installation, operating & maintenance, etc. (and fuel where 
appropriate). Also, the cost for storage cospecialized for RA equals that for RB because the integration investment 
percentage is identical for the two renewables, as are the returns on integration investment. 
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For the base case, the net present value of the startup assumes a 5% per annum discount rate, the 

approximate U.S. Treasury Bill interest rate over the past decade (U.S. Treasury 2011). The NPV 

in the base case is shown in Figure 2. Following Tanrisever et al. (Forthcoming), we ignore 

depreciation and income taxes in our simple financial model; thus we equate cash flow to profit. 

F3!3!"9'*)6.("163"Q/A/$*.(">%&/%.:+.6"
Recall the two research questions with respect to the integration investment problem stated in the 

introduction. One is the overall level of integration investment the storage startup should 

commit. The second and more subtle question is: How much of that investment should be 

allocated to cospecializing in RA rather than RB? To better understand these issues, we change 

the integration investment allocated to RA (.a) to 100% and change that of RB (.b) to 0%, 

which we refer to as the “Focused-RA” strategy. We then reverse this allocation, so that RB 

receives 100% of the cospecialization investment, which we refer to as the “Focused-RB” 

strategy. In Figure 4a we compare these investment decisions with those of the base case, which 

uses a “Balanced” strategy that allocates 50% of integration investment to each renewable. The 

Focused-RA strategy dominates. Thus, a focused strategy can dominate the balanced strategy, if 

the right complement to cospecialize with is selected. Given the short time horizon of startups, 

cospecializing with RA (which, like wind power, has relatively low initial costs, but less long-

term cost reduction potential) dominates. While it is not shown in Figure 4, if RA had the same 

initial low cost as RB, but RB had a much greater potential cost reduction through the learning 

curve, the results would be exactly reversed, with the Focused-RB strategy dominating. 

 However, would a focused strategy continue to dominate if both renewable technologies 

were identical in their initial cost and their potential cost reduction (i.e., if both had the same 

learning curve slopes)? As described in Section 2, the answer is not intuitively obvious. We test 

this scenario by setting RB’s initial cost the same as that of RA’s and setting both renewables’ 

learning curve slopes to 80%. Figure 4b shows that the focused strategy still dominates because 

confining integration investment to cospecializing with just one renewable can better leverage 

the supply-side externality feedback inherent in the renewables’ learning curves than splitting 
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that investment between both renewables. (Note: the NPV for Focused-RA is identical to 

Focused-RB’s and is thus invisible.) Hence, the implication is that a startup’s best strategy is to 

focus its integration investment on cospecializing to one complement, even if the potentials for 

both complements are identical. 

Figure 4: Net Present Value of Wealth Created by Storage Startup for Different Integration Investment Strategies  

   
(a)  Base Case Renewable Learning Curve Parameters               (b)  Identical Renewable Learning Curve Parameters 

Note:  In (b), the NPV for Focused-RA is identical to Focused-RB’s and is thus invisible. 

F3,"#$%.:&/%+'$"#$1.6%7.$%">%&/%.:+.6"V$(.&"0+6E"
The previous section reveals preliminary findings on the startup’s integration investment 

decision, in particular, that focused strategies can be beneficial even when the two 

complementary technologies are identical. However, there is great uncertainty about the 

technological potential for both storage and renewable generation technologies that must be 

accounted for. Another significant source of uncertainty is fluctuating gas prices. How should 

uncertainty influence the integration investment decision? To address this, we employ a Monte 

Carlo simulation to study the behavior of the model described in Section 3 under these 

uncertainties.  

F3,3!";I<.&+7.$%/A"5.6+:$"W'&"M'$%."@/&A'"R$/AL6+6"
To examine the effects of technological uncertainty, we consider two strategic decisions. The 

first is whether to invest 0%, 15%, or 30% of working capital per year in cospecialization. The 

second decision is how much of that cospecialization investment should be allocated to RA 

versus RB. For this latter question we specify five possibilities: 
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     Allocation       Percentage of Investment     Percentage of Investment  
Strategy Number  Cospecializing Storage in RA  Cospecializing Storage in RB 
  1   0% 100% 
  2   25% 75% 
  3   50% 50% 
  4   75% 25% 
  5   100% 0% 
 
This design of experiments results in a study of 3 x 5 = 15 strategies. For each of these 15 

financing and investment strategies, we perform a Monte Carlo analysis of 1000 simulation runs. 

This theoretically yields a total of 15,000 runs, but fortunately, the number of strategies actually 

simulated can be reduced without loss of generality. In particular, all five allocation strategies 

yield identical results when 0% investment of working capital in cospecialization is selected. 

Additionally, if the distributions for the parameters for RA and RB are identical, which is true for 

most of our Monte Carlo studies; allocation strategies 4 and 5 are redundant in their results with 

allocation strategies 2 and 1 respectively. The learning curve slopes for RA, RB, and storage are 

drawn from a uniform distribution over the interval of 65% to 95%, with a mean of 80%. The 

mean and the limits are suggested by Argote (1999: 20). The draws for the learning curve slopes 

for each of the three technologies during a single run will differ. The initial cost for RB is again 

set identical to that of RA, so as to maximize the uncertainty over which complement it is 

preferable to cospecialize to. The sample paths of levelized natural gas prices are also allowed to 

vary over simulation runs, although the mean and coefficient of variation remain constant across 

simulation runs and have the the same values as in the deterministic case in Section 4.1.  

F3,3,"Q/6."@/6."M'$%."@/&A'"0.6)A%6"
The results of the Monte Carlo simulation are shown in Table 2. These include the average NPV 

as specified in (16) as well as the standard deviation and coefficient of variation for the NPV, the 

percent of runs ending in negative NPV (i.e., losing money), the percent of runs ending in a 

bankruptcy; and the average final market share (in case of bankruptcy, the final market share is 

assumed to be zero.) Note that the dominant outcome (when there is one) for each integration 

investment decision is bolded. Some trends are clearly observable under this scenario’s 

parameters. One trend is that startups should select an aggressive, focused strategy with respect 
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to the integration investment in order to maximize NPV. Hence, the focused strategy remains 

dominant under uncertainty. This is because of the significant skewing of expected NPV created 

by the supply-side externalities, which is shown by the box and whisker plots for each 

investment strategy in Figure 5. The implications of this trend are profound. An entrepreneur, at 

least under this scenario’s set of parameters, should not hedge her bets. She should pick a 

complement to cospecialize in and stick with it, even if, as in this scenario, there is a 50% chance 

of making the wrong decision. 

Table 2:  Comparison of Results of Different Cospecialization Investment Strategies vs. Outcome Parameters  

 
Note: The “-” for percent cospecialization investment for RA and RB indicates the irrelevance of this decision given the  0% 
level of working to cospecialization investment. SD stands for standard deviation. CV stands for coefficient of variation (σ/µ). 
  
Figure 5: Box and Whisker Plots Comparing the Results of Various Integration Investment Strategies 

 
Note: “focused,” “unbalanced,” and “balanced” respectively refer to a “0%/100%”, “50%/50%, and “50%/50%” 
split between investing in cospecializing in RA vs. RB. Because the financial ramifications are symmetric with 
respect to whether RA or RB is more heavily invested in, only one of the two focused and two unbalanced strategies 
are displayed. Also, the line in each box and whiskers plot above represents the median, the box the interquartile 
range (25th to 75th percentile), and the whiskers in the 9th and 91st percentiles. If the distributions were normal, the 
length of each whisker would equal that of the interquartile box. Finally, note that because of the high number of 
bankruptcies, the bottom of each interquartile is compressed very close to its associated whisker. 
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 Other trends are also present. For example, it is well known that entrepreneurs often focus 

more on outcomes other than expected NPV. In particular, oft-mentioned priorities such as 

autonomy or final market share can trump entrepreneurs’ desire for financial success (Naffziger 

et al. 1994; Shane et al. 2003; Cassar 2007; Swinney et al. 2011). Thus, it is noteworthy that 

under this set of parameters, while final market share is also optimized by an aggressive, focused 

strategy, the rate of bankruptcy is not. In this parameterization, the dominant strategy to avoid 

bankruptcy is the conservative (zero cospecialization) investment strategy, for which the 

question of focus is irrelevant. 

F3,3?">.$6+%+1+%L"B.6%+$:"
We next perform a number of additional analyses to test the sensitivity of the model to various 

factors that (1) are prominent in driving the causal loops in Figure 1, (2) are related to financial 

measurements, (3) likely to be important, such as spillover. For example, one sensitivity test 

(shown in Table 3 in the online appendix) increases the time horizon of the model to 120 months. 

Aggressive integration investment and a focused strategy remain dominant under increased 

growth, although they are less dominant than in our base case Monte Carlo simulation. 

Interestingly, however, an aggressive, balanced strategy dominates with respect to market share. 

 For purposes of expositional brevity, Table 3 consolidates the results of the all of the various 

sensitivity analyses performed (many details of which are in the online appendix) into a list that 

shows how various factors influence (a) the preference for allocation of cospecialization 

investment to only one renewable (i.e., a focused versus a balanced strategy) and (b) the 

preference for more aggressive levels of total cospecialization investment. Table 3 further bins 

the numerous sensitivity tests by the factors identified in Table 1 (excluding focus, which is an 

outcome variable). With respect to pursuing a focused versus a balanced integration investment 

strategy, the data from the sensitivity tests show a consistent preference for a focused strategy 

with respect to the expected NPV under most scenarios, despite a 50% chance ex ante that this 

investment choice may be wrong. In fact, the cells containing “-” in Table 3 do not indicate that 

the balanced strategy is preferred by the startup, but only that the presence of those factors 
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reduces the advantage of the focused strategy over the balanced strategy. For example, looking at 

the causal loop in Figure 1, one would expect that increasing the costs of integration would 

weaken the reinforcing effect of the integration investment loop and raise the point at which the 

cospecialization investment loops lead to diminishing returns from integration investment. Thus, 

integration investment is expected to be more beneficial, which it is.  (Of course, determining 

when each loop will dominate is impossible without a simulation, as is typical of systems with 

multiple nonlinear, delayed feedback loops (Sterman 1994).) One could continue with each of 

the five factors listed in Table 3, but in the interests of brevity we summarize by noting that any 

treatment that (1) increases market growth, (2) makes investment in integration more expensive 

or less efficient, (3) strengthens the supply-side externalities at play in the model, or their 

uncertainty or asymmetry, (4) effectively compresses the time horizon, or (5) constrains working 

capital, increases the relative dominance of focused over balanced integration investment 

strategies. 

 In general, aggressive investment strategies are favored under most sensitivity tests, but the 

relative dominance of aggressive over conservative strategies again varies. Moreover, the pattern 

does not entirely replicate that for focused strategies. For example, if integration is more 

expensive, the relative dominance of the aggressive strategy decreases with respect to NPV (see 

Table 3). To understand why this is so, again consider Figure 1. As stated earlier, the 

cospecialization investment loop that governs integration investment is a reinforcing loop.  

Hence, initially, additional integration investment increases NPV.  At some point, however, 

additional integration investment faces diminishing returns because of the cospecialization 

balancing loops.  Thus, as the effectiveness of integration investment increases, the benefit to 

additional integration investment eventually declines, making an aggressive integration 

investment strategy relatively less profitable than in a scenario of easier integration. Thus, more 

expensive integration enhances the dominance of a focused integration investment strategy, but 

reduces that of an aggressive integration strategy. (Note that teasing this out without a simulation 

model and sensitivity analysis would be hopeless, as Sterman 1994 discusses.) 
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Table 3: Simulation Sensitivity Analysis of Factors That Favor Investment Strategies in Cospecialization Investment   

 
Note: The (+) or (-) symbols indicate increasing (decreasing) preference for allocation of investment to only one 
complement (column 1) or for high investment in cospecialization (column 2), all else being equal. This does not 
mean, for example, that more expensive integration necessarily leads to a conservative investment strategy, only that 
as integration becomes more expensive, conservative integration investment is relatively more attractive. The “*” 
indicates that a particular focused investment is directed to the appropriate complement (e.g., if initial cost of RA is 
higher than RB, then RB will receive the focused integration investment, all other things being equal).  Finally, a 
“stronger” learning curve means that the learning curve slope is smaller.  For example, a 70% learning curve is 
“stronger” than an 80% learning curve because costs drop off by 30% per doubling of cumulative output rather than 
20% (Argote 1999).  
 
 With respect to aggressiveness, treatments that (1) decrease market demand, (2) make 

integration less expensive, (3) increase supply-side externality strength, uncertainty, or 

asymmetry, (4) effectively compress the time horizon, or (5) loosen working capital constraints 

all generally serve to increase the relative dominance of an aggressive strategy. Finally, it should 

be noted from Table 3 that market demand, integration, and working capital have opposite 

effects with respect to favoring focus and aggressiveness, while externalities and time 

compression have aligned effects.  

 When considering other outcome metrics such as bankruptcy and market share, the dominant 

strategy often differs from the results in either column of Table 3. For example, the dominant 

strategy with respect to bankruptcies is almost always conservative investment, particularly 

under time compression. This finding is qualitatively in line with Swinney et al.’s findings 

(2011) that firms that avoid bankruptcies tend to be more conservative in investment than those 

that do not. With respect to market share, dominant strategies with respect to NPV align more 

often than not with strategies that maximize market share, but not always (see Table 3 in the 

Allocate Investment 
to Only One 
Complement 

(Focused Strategy)

Aggressive 
Cospecialization 

Investment

Market Growth Higher Demand Growth + -
More Expensive Integration + -
Less Spillover + -
Greater Market Sensitivity to Price + +
Stronger Storage Learning Curve + +
Stronger Complement Learning Curve + +
Higher Storage Learning Curve Uncertainty + +
Higher Complement Learning Curve Uncertainty + +
Stronger Complement Learning Curve for RB vs. RA +* +
Higher Initial Cost for RB (vs. RA) +* +
Higher Discount Rate + +
Shorter Horizon + +
Higher Fixed Costs + +
Smaller Contribution Margin Ratio + -
Smaller Total Equity Injection + -

Increasing (+) or Decreasing(-) 
Relative Preference for:

Integration

Time Horizon 
Compression

Supply Side 
Externalities' 

Strength, 
Uncertainty & 
Assymmetry

Working Capital 
Constraints
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online appendix). Instead, three factors in particular favor a bifurcation in strategies, whereby 

focused strategies favor NPV and balanced strategies favor market share. One factor is “easier” 

market conditions (e.g., less market sensitivity to price or higher market growth). Another is 

spillover, because it blurs the distinction between focused and corner strategies. A third factor 

results from either a longer decision horizon or higher total equity infusion. The second and third 

factors quickly produce diminishing returns in a focused strategy, which makes a balanced 

strategy for integration investment more attractive.  

H"-+7+%/%+'$6"/$("5+6*)66+'$"
Our results reflect the usual limitations of simulation-based mathematical models. For instance, 

our stylized model is far simpler than reality, which limits generalizability (Barnett 1994). For 

example, the variability in natural gas prices might not have a clear analogue in other sectors 

such as the electronics industry. Also, because we rely on simulations rather than analysis, some 

potential behavior modes may have escaped our investigation. That said, we preferred simulation 

because an analytically tractable model would have required far more simplification and 

divergence from reality.  Our Monte Carlo sensitivity analyses help to address concerns of 

generalizability and capture variability in future states of nature. More important, our approach 

focuses on the interaction of a few reinforcing and balancing loops, and thus highlights behaviors 

of interest such as the general dominance of aggressive, focused integration strategies. Another 

limitation is that the nature of our motivating example forces us to use current industry 

parameters to model a situation that will require several years to fully evolve. For these reasons, 

the qualitative results and insights of this study are more relevant than the quantitative. Finally, 

given the importance of natural gas to the renewable energy industry, we model competition only 

with that one mature entrant and not with other storage startups. On the other hand, one 

surprising lack of limitation from Section 4 must be mentioned, which is that many of our results 

apply even in deterministic settings.  That is, while uncertainty exaggerates some behaviors, such 

as the general dominance of focused integration investment, it is often not the root cause of those 
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behaviors. Instead, integration combined with supply-side externalities are the fundamental 

causes of the behavior highlighted in our model. 

 This study has several important implications for theory development. First, we have shown 

that integration investment decisions can make a critical difference for startups’ success. Because 

this result is driven by the presence of complementary technologies, our results provide a two-

sided market underpinning for Schilling’s (2002) empirical findings. Empirical research is thus 

needed to extend Schilling’s (2002) work to determine exactly what factors lead startups to 

success in the presence of complementary technologies. As a start, we identified the five factors 

shown in the sensitivity analysis (Table 3) that influence the impact of complementary 

technologies. Other important factors could potentially include: (1) how many potential 

complementary technologies (and whether there is a “standard” to integrate to) are in the 

emerging complementary market, (2) how many startups are present, and (3) the presence of 

(potentially multiple) mature competitors. Such studies would be particularly illuminating if they 

spanned multiple industries with different characteristics such as price sensitivity and market 

growth. Finally, this paper concentrated on strategies that maximize NPV. While this is 

appropriate for high-tech industries that are funded by venture capital, to achieve a clearer 

understanding, we must consider startup industries that are lower tech, bootstrapped, or have 

some other industry or financial structure. In these cases, it is necessary to better understand 

decision makers’ utility functions (e.g. a preference for market share versus NPV) prior to 

modeling or empirical research.  Finally, the two-sided market literature must be extended as 

well to consider startups’ compressed timing and working capital constraints, which have both 

been shown in this paper to dramatically affect market outcomes. Additionally, the two-sided 

market literature must begin to consider the effects of the integration investment strategy, as 

most research in this area concentrates solely on price subsidies. 

 Moreover, our specific examination of integration investment also extends the work of 

Lesveque and colleagues (Levesque 2000; Armstrong and Levesque 2002) on R&D investment. 

In particular, confirming Archibald et al. (2002) and Tanrisever et al. (Forthcoming), startups 



!#)!

must restrict investment due to compressed time horizons and financial capital. These constraints 

manifest in an emerging complementary industry by driving the startup’s preference for focused 

solutions in integration investment when multiple potential complementary technologies are 

possible. Our work also contributes to the flexible design literature, demonstrating that working 

simultaneously on two technological solutions may help mature firms cope with technological 

uncertainty (Arditti and Levy 1980; Ward et al. 1995; Srinivasan et al. 1997; Krishnan and 

Bhattacharya 2002; Sommer and Loch 2004; Sommer et al. 2008), but startups may not have that 

option because of limitations in working capital and compressed timing. This finding broadens 

the claim made by Tanrisever et al. (Forthcoming) and Swinney et al. (2011) that research with 

respect to operational decisions for mature firms cannot be applied to startup firms immediately 

without careful examination of their financial and timing constraints. 

K"@'$*A)6+'$""
We began this paper by defining a gap in the literature treating the integration investment 

decision by startups in industries with complementary technologies as shown in Table 1. We 

then built a system dynamics model to determine optimal integration investment strategies and 

explored the effects on this decision of five factors—market growth, integration, supply-side 

externalities, compressed timing, and working capital constraints. The resultant analysis has the 

following practical implications: we find that startups ideally should invest in integrating with 

one clearly superior complementary technology. For example, wind power is currently much 

cheaper than photovoltaic solar and is likely to remain so over the typical startup decision 

horizon. This explains why, despite some technological spillover, Xtreme Power, a battery 

storage startup, directed the bulk of its integration investment toward wind power for its first six 

years, ignoring integrating with photovoltaic solar (Xtreme Power 2010). However, according to 

the results of this analysis, even if the “better” complementary renewable had not been so clear, 

Xtreme Power (and its venture capital backers) would still have done well to focus integration 

investment on one complementary technology initially, and to switch to another only after 

commercial success with the first technology had been achieved. Indeed, Xtreme has followed 
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this pattern by beginning only now to invest in integrating to photovoltaic solar. Such insights on 

focused integration investment would likely extend to other platform industries (e.g., console 

gaming or office productivity software) with many mature competitors.  When mature 

competitors are not present, however, these insights may not be as applicable. Thus, there is a 

need for additional research in industries without mature competitors as described earlier. 

  Few emerging complementary industries directly concern policy makers.  However, an 

industry that does attract the interest of policy makers is the energy storage industry, from which 

we drew our motivating example.  In this case, the preference we find for focused strategies in 

integration may be problematic for policy. For example, if most storage firms make focused 

integration investments in wind power rather than in investing in (currently) more expensive 

technologies (such as photovoltaic solar), this decision trend could result in long-term under-

investment in a potentially more efficient technology. Hence, governments may need to 

intervene because incentives to encourage entrepreneurs to invest in integrating with 

technologies such as photovoltaic solar may be in the public interest. Because of the robustness 

of our results, we believe such policy advice may likely also extend to other similar industries, 

such as smart meters and smart grids, which are also of interest to policy makers. 
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